
Analysis of parallel temperature data using t-tests – a case study 1 

 2 

Dr Bill Johnston 3 

www.bomwatch.com.au 4 

Summary 5 

A protocol is suggested whereby before undertaking paired and un-paired t-tests of daily 6 

temperatures measured in-parallel by different instruments, properties of datasets are 7 

examined and steps taken to mitigate autocorrelation, which is the interdependence of values 8 

at one time on observations for previous times. Also, as the significance of test outcomes 9 

increases as the numbers of samples increase, an empirical measure of whether a significant or 10 

highly significant difference is meaningful in the overall scheme of things is important. The use 11 

of paired verses unpaired t-tests for comparing instruments that cannot measure the same 12 

parcels of air, 100% of the time, is also discussed.    13 

While for daily data some autocorrelation may be unavoidable, with its effects much 14 

diminished, neither paired nor unpaired t-tests detected significance in the difference between 15 

daily maximum temperature measured by thermometers, and by the automatic weather 16 

station in 60-litre Stevenson screens located 179m apart at Townsville airport. The cause of 17 

autocorrelation in daily maximum temperatures at Townsville is outlined.  18 

1. Background 19 

Recent exchanges at https://wattsupwiththat.com/ have emphasised the need for a protocol-20 

based approach to using t-tests to compare parallel daily temperatures measured by different 21 

instruments housed in the same or different Stevenson screens. While the t-test is arguably the 22 

most frequently used statistical test it is also frequently misused, mainly by ignoring 23 

assumptions on which it is based. The unpaired or 2-sample t-test calculates the probability (P) 24 

that the mean for each instrument or screen is the same, while the paired or repeated-25 

measures t-test is a one-sample test of whether the mean of the differences between 26 

instruments is zero. 27 

A low P-value, typically less than 0.05 (5% or 1 in 20), rejects the Psame or Pdiff=0 hypothesis in 28 

favour of the alternative, which is that instruments/screens/sites are significantly different. The 29 

words significant and highly significant indicates group means are unlikely to be the same, or 30 

for the paired test, that the mean of their sign-preserved differences is unlikely to be zero. 31 

P-levels are usually specified as P<0.05 (significant), P<0.01 (highly significant), or given as 32 

P = 0.xxx.  33 

The purpose of this note is to outline in general terms, how t-tests are used and their 34 

limitations. The research question is whether Tmax measured by different instruments is the 35 

same, or whether the mean of their differences equals zero. Parallel data for Townsville airport 36 

is used as the case study.   37 

1.1 Paired or un-paired 38 

As opposed to comparing the means of two independent groups, such as randomly chosen 39 

subjects receiving Treatment(a) verses another group receiving Treatment(b), paired t-tests 40 

compare data that are in the form of matched-pairs (i.e., each subject delivers data for both 41 

conditions). For instance, liveweight of the same animals measured before and after a new diet 42 

or intervention. Pairing accounts for variation within subjects given the same treatment, thus 43 

http://www.bomwatch.com.au/
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the paired t-test is more likely to show differences are significant, than if the same data were 44 

compared as treatment groups.  45 

In this context, independent means that samples or observations are from different 46 

populations, whereas paired implies a connection between them. Whether two types of 47 

unrelated instruments measuring properties of the same airmass on the same day constitute a 48 

data-pair is therefore debatable. Nevertheless, there are pitfalls in applying the test to large 49 

numbers of closely-spaced timeseries.   50 

1.2 Assumptions are important 51 

Validity of all parametric hypothesis tests depends on underlying assumptions, and for t-tests 52 

the most important is that observations for one subject, or at one time do not predict 53 

observations at subsequent times. Serial dependence (also referred to as autocorrelation) 54 

inflates the likelihood of false positives, i.e., finding differences are significant when they are 55 

not. Autocorrelation is common in sequential data and the shorter the time interval, the more 56 

likely will successive data be serially correlated, hence the name autocorrelation. 57 

As they are affected by cycles and sequences of dry and wet days etc., researchers must verify 58 

that daily temperatures measured by two instruments housed in the same or different 59 

Stevenson screens are independent of previous data. Likewise, for the differences between 60 

serial data-pairs. 61 

How the t-test works is explained in simple terms here: https://blog.minitab.com/en/statistics-62 

and-quality-data-analysis/what-is-a-t-test-and-why-is-it-like-telling-a-kid-to-clean-up-that-mess-63 

in-the-kitchen and restated, the t-value is the ratio of signal to noise – the strength of the signal 64 

(the difference being adjudicated), divided by noise in the data (variation as measured by the 65 

standard deviation (pooled for un-paired t-tests) adjusted for the number of samples).  66 

There is a large body of information in the public domain that explains the t-test and its 67 

strengths and weaknesses (e.g., https://vasishth.github.io/Freq_CogSci/common-mistakes-68 

involving-the-paired-t-test.html) and practitioners should avoid the pitfalls of claiming 69 

differences are significant, when the wrong test was used, test assumptions were violated, or 70 

differences may not be meaningful or consequential.  71 

1.3 The size of a difference verses significance 72 

A problem with datasets consisting of more than around 60 observations is that as the 73 

numbers of samples increase, trivial differences can become increasingly significant.  74 

As explained here: https://stats.stackexchange.com /questions/4075/how-to-perform-t-test-75 

with-huge-samples  standard errors decline as the numbers of samples increase, which 76 

markedly deflates the P-level of the test (i.e., P-values decline therefore become more 77 

significant). In their paper: Too big to fail: large samples and the p-value problem (https://sci-78 

hub.se/https://www.jstor.org/stable/24700283, Lin et al. (2013) point out that for very large 79 

samples, P-levels go quickly to zero and solely relying on P-values can lead researchers to claim 80 

significance for differences that are of no practical worth. 81 

With this in-mind, transitioning from manually observed thermometers to data-loggers and 82 

platinum resistance temperature (PRT) probes, significance of the sign-preserved running 83 

difference between instruments does not necessarily imply the difference is important. As 84 

measurements are subject to error (uncertainty) including that: (i), neither instruments can 85 

sample exactly the same parcels of air 100% of the time; (ii), thermometers may be misread; 86 

https://blog.minitab.com/en/statistics-and-quality-data-analysis/what-is-a-t-test-and-why-is-it-like-telling-a-kid-to-clean-up-that-mess-in-the-kitchen
https://blog.minitab.com/en/statistics-and-quality-data-analysis/what-is-a-t-test-and-why-is-it-like-telling-a-kid-to-clean-up-that-mess-in-the-kitchen
https://blog.minitab.com/en/statistics-and-quality-data-analysis/what-is-a-t-test-and-why-is-it-like-telling-a-kid-to-clean-up-that-mess-in-the-kitchen
https://vasishth.github.io/Freq_CogSci/common-mistakes-involving-the-paired-t-test.html
https://vasishth.github.io/Freq_CogSci/common-mistakes-involving-the-paired-t-test.html
https://sci-hub.se/https:/www.jstor.org/stable/24700283
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and (iii), PRT-probes are prone to spiking, a difference between daily observations could be an 87 

artefact, or it could be so small as to be immaterial in a day-to-day sense.  88 

Thus, the strength of an argument is not whether a difference is significant or highly significant 89 

but whether it is important in the overall scheme of things. There are increasingly-strident calls 90 

in scientific literature for the importance (or size) of a difference to be stated as well as a 91 

hypothesis test of the significance of an effect. 92 

Importance of differences between instruments is evaluated using Cohen’s d, which is 93 

calculated as the size of the mean difference between instruments (Site/instrument2, minus 94 

Site/instrument1, which is the control), divided by the average standard deviation. While units 95 

(oC) cancel out, the magnitude of the difference is expressed in standard deviation units and it 96 

follows that the higher the d value the more important is the difference (see: Fritz at al., 2012, 97 

https://sci-hub.se/10.1037/a0024338). 98 

2. Case study Townsville, Queensland (BoM ID 32040 and 32178) 99 

Daily maximum temperature (Tmax) was measured at Townsville airport using thermometers 100 

housed in 230-litre Stevenson screens until 8 December 1994 when they were replaced by 60-101 

litre screens (Figure 1). On that day, an automatic weather station (AWS) commenced operating 102 

on a 2m-high mound 200m northwest of the meteorological office. Aerial photographs showed 103 

that between August 1995 and July 2002 the supposed ‘old’ site also moved to a position 93m 104 

directly west of the office where another 60-litre screen was installed. As the site was still 105 

visible in the July 2002 Google Earth Pro satellite image at coordinates provided in comparison-106 

site, site-summary metadata (Latitude -19.2492o, Longitude 146.7647o) evidence that the ‘old’ 107 

site moved is unequivocal.  108 

Site relocations may cause discontinuities in data and relocating the ‘old’ site and several 109 

previous moves including to the western side of the runway in 1969, was not mentioned in 110 

Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-SAT) 111 

metadata. Instead, ACORN-SAT misleadingly claimed: “Observations have been made at 112 

Townsville Airport since 1942. There are no documented moves until one of 200m northeast 113 

on 8 December 1994, at which time an automatic weather station was installed”. 114 

“Observations at the new site were made under the original number (032040), while the old 115 

site continued until December 2000 under the station number 032178”. It is abundantly clear 116 

that under the guise of data homogenisation, site moves and changes at Townsville airport 117 

were used by Bureau of Meteorology (BoM) scientists, most recently Blair Trewin, to falsely 118 

imply that the climate had warmed (See: https://www.bomwatch.com.au/wp-119 

content/uploads/2020/02/Townsville-full-paper.pdf). 120 

Figure 1. Inside the current 60-litre Stevenson 121 
screen at Townsville airport. At the front are dry 122 
and wet-bulb thermometers, behind are 123 
maximum (mercury) and minimum (alcohol) 124 
thermometers, held horizontally to minimise 125 
“wind-shake” which can re-set the instruments, 126 
and at the rear, which faces north, are dry and 127 
wet-bub PRT (AWS) sensors. Moistened by a 128 
small patch of muslin tied by a cotton wick that 129 
dips into the water reservoir, dry-bulb minus wet-130 
bulb T (wet-bulb depression) is used to estimate 131 
relative humidity and dew point temperature. 132 
(BoM photograph). 133 

https://sci-hub.se/10.1037/a0024338
https://www.bomwatch.com.au/wp-content/uploads/2020/02/Townsville-full-paper.pdf
https://www.bomwatch.com.au/wp-content/uploads/2020/02/Townsville-full-paper.pdf
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So, although inter-site comparison data are available from 9 December 1994 to 31 December 134 

2000 (BoM ID 32178), the manually observed site moved and the screen size changed at the 135 

same time as the automatic weather station (AWS) commenced operating with its 60-litre 136 

screen at the current site.  137 

2.1 Methods 138 

Data were downloaded from the BoM, aligned manually using Excel, then processed and 139 

analysed using R (https://www.r-project.org/). Briefly, daily manual and AWS data were de-140 

seasoned as separate variables by deducting day-of-year (1-366) averages to give daily 141 

anomalies, which were differenced (AWS minus thermometer anomalies) as an additional 142 

variable. The resulting final dataset consisted of 2,212 complete cases of raw daily data for 143 

each location (Site1 (manual) and Site2 (AWS)), de-seasoned anomalies (Anom) for each, and 144 

their difference (Delta). Preliminary analysis was undertaken using the statistical application 145 

PAST from the University of Oslo: https://www.nhm.uio.no/english/ research/ resources/past/, 146 

and should be duplicable using proprietary statistical packages such as Minitab.  147 

Preliminary tabular and graphical analyses using PAST was used to get a feel for the data, with 148 

statistical analysis as the subsequent step. 149 

2.2 Results 150 

2.2.1 Preliminary analysis - data properties 151 

The raw data summary (Table 1) shows that differences in means, ranges, measures of 152 

variation (standard error, variance and standard variation), quartile distributions etc. between 153 

manually observed Site1 data and AWS Site2 data were small.  154 

Table 1. Statistical properties of Site1 (thermometer) and Site2 (AWS) Tmax data used in the study. (Summarised 155 
using PAST.) 156 

Property Site1 Site2 

N 2,211 2,211 

Min 16.00 15.80 

Max 41.60 41.30 

Mean 28.83 29.17 

Std. error 0.06 0.06 

Variance 7.72 7.45 

Stand. dev 2.78 2.73 

Median 29.10 29.50 

25th percentile 27.00 27.30 

75th percentile 31.00 31.30 

Skewness -0.37 -0.44 

Kurtosis 0.35 0.54 

Coeff. Var (%) 9.64 9.36 

   

The mean Tmax effect size is 29.17Site2 - 28.63Site1 = 0.34; average SD = 2.76, thus Cohen’s d 157 

= 0.34/2.76 = 0.12 standard deviations, which being <0.2 is rated trivial. Graphical analysis 158 

showed raw data were strongly cyclic, while in addition to prominent spikes of up to ±6oC, 159 

differenced anomaly data exhibited underlying changes and trends caused by factors unknown 160 

(Figure 3). 161 

https://www.r-project.org/
https://www.nhm.uio.no/english/%20research/%20resources/past/
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Figure 2. Daily Tmax measured using thermometers in the 60-litre screen, 93m west of the 162 
meteorological office (Site1) and Tmax measured by the AWS 200m northwest of the office (Site2). 163 
Data are naturally highly variable, and at both sites Tmax anomalies exhibited charges and trends due 164 
to unknown factors, and effects due to the weather. 165 

Although instruments were housed in same-sized screens, the sites were 179m apart and 166 

potentially affected by impacts and microclimates unique to each site. Data were therefore 167 

likely to be confounded with factors unknown. While rainfall may be influential, Figure 3 shows 168 

anomaly differences were affected by step-changes, most likely related to undocumented site-169 

changes (including road construction and developments nearby) than changes in the weather, 170 

which could reasonably be assumed to be the same across sites. 171 

Figure 3. Step-changes in anomaly differences (Site 2 minus 172 
Site 1) are indicative of site-change effects. The new mounded 173 
site was slightly warmer, particularly after the up-step in May 174 
1999. 175 

 176 

2.2.1 Preliminary analysis – seasonality and autocorrelation 177 

Time dependency of one observation on another is determined by the linear correlation 178 

coefficient verses the number of periods between times. PAST autocorrelation function (ACF) 179 

plots (https://en.wikipedia.org/wiki/Autocorrelation) show repeating seasonal signals in raw 180 

data resulted in autocorrelation across all time-lags (Figure 4). 181 

  

Figure 4. Autocorrelation function (ACF) plot showing correlation between daily Tmax (left) and Tmax 182 
anomalies (right) and the same data lagged to the maximum of 1105 days. Grey dashed lines show 183 
95% confidence bands for the linear correlation coefficient (r) within which data are NOT 184 
autocorrelated. 185 

By way of explanation, the linear correlation coefficient varies from +1 to -1 (implying negative 186 

or positive correlation), with ±1 being a perfect match between data sequences. Grey lines 187 

indicate the zone where observed and lagged data would NOT be correlated. Removing the 188 

seasonal signal by deducting day-of-year averages from respective day-of-year values 189 

considerably reduced autocorrelation between lagged anomalies; however, due to ‘hidden’ 190 

https://en.wikipedia.org/wiki/Autocorrelation
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dependencies, possible trends and site effects (Figure 2) anomalies were still autocorrelated by 191 

between 75 and up to 200+ days. 192 

2.2.2 Preliminary analysis – raw data distributions 193 

PAST histogram and normal probability (Q-Q) plots in Figure 5 show: (i), data distributions were 194 

not symmetrical (normally distributed) around the Site1 mean of 28.8oC, and that (ii), Site1 195 

data less than about 25oC were cooler than AWS data, while AWS data were warmer above 196 

about 31oC (circled). 197 

Figure 5. Histograms show Site 1 thermometer 198 
data (grey bars) were generally cooler when 199 
TmaxSite1 was less than about 25oC, while AWS 200 
data (Site2, red bars) was warmer where 201 
TmaxSite1 exceeded about 31oC. Those zones 202 
represent the tails of data distributions (circled). 203 
The squiggle around the lines in the Q-Q plot on 204 
the right results from bimodality (see 205 
https://seankross.com/2016/02/29/A-Q-Q-Plot-206 
Dissection-Kit.html). 207 

Probability density function (PDF) plots convert frequency histograms, which are stepped, into 208 

the likelihood of a value occurring within an interval range of one-unit, thereby providing a 209 

smoothed representation of the same data. Also, as PDFs are calculated over the same x-axis 210 

range and the area under each is unity, the two curves are directly comparable (Figure 6).  211 

Figure 6. Probability density function plots of the data shown as 212 
histograms in Figure 5, confirm that the principal difference between 213 
thermometer data at Site1 and AWS data at Site2 occurs in the tails of 214 
respective data distributions. Thus, while the mean may be little 215 
different, Site2 extremes have shifted warmer relative to Site1. 216 

The bimodal nature of the distributions is due to the sameness of 217 

temperatures from June to August (winter), and of higher but 218 

similarly static temperatures from December to February 219 

(summer).    220 

2.2.3 Preliminary analysis – data distributions of Tmax anomalies 221 

As seasonality, which is a cycle of fixed frequency and amplitude, affects the difference 222 

between successive observations advancing and waning across all times, and observations 223 

consist of paired data for each day, removing day-of-year cycles from respective day-of-year 224 

observations is an essential prerequisite for unbiased analysis. Also, as cycles are predictable 225 

their removal should considerably reduce autocorrelation. 226 

Daily anomaly data were more normal in their distribution (Figure 7). However, departure in 227 

the Q-Q plot indicates more extreme values in the tails than would be expected if datasets 228 

were truly normal. Despite so-called fat tails, data were symmetrical, Q-Q plots were parallel, 229 

and the normal distribution was a better fit to anomaly data distributions than was the case for 230 

raw data.  231 

2.2.4 Preliminary analysis – randomisation and sampling strategies 232 

As an experiment, the dataset was randomised (shuffled) to disrupt dependency of one value 233 

on previous values, while the R package dplyr (https://cran.r-234 

project.org/web/packages/dplyr/index.html) was used to randomly draw proportions of the 235 

https://seankross.com/2016/02/29/A-Q-Q-Plot-Dissection-Kit.html
https://seankross.com/2016/02/29/A-Q-Q-Plot-Dissection-Kit.html
https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/web/packages/dplyr/index.html
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total of 2,211 cases for separate evaluation. Cohen’s d with 95% confidence intervals was 236 

calculated by the effsize package (https://cran.r-project.org/web/packages/effsize/effsize.pdf). 237 

Figure 7. Removing the seasonal signal by 238 
deducting day-of-year averages from respective 239 
day-of-year data caused datasets to assume a 240 
more normal distribution. The ‘S’-shaped 241 
departure from normality in the Q-Q plot 242 
indicated higher number of outliers in the tails of 243 
both datasets but otherwise distributions were of 244 
similar shape.    245 

2.3 Statistical outcomes 246 

Statistical outcomes are summarised in Table 2. 247 

Paired and un-paired t-tests detected significant differences between sites/instruments in both 248 

time-ordered and shuffled raw data, with Site2 being warmer on average by 0.3 to 0.4oC. 249 

P-levels were also considerably smaller (i.e., more significant) for paired t-tests than unpaired 250 

tests, for instance, for N=24 re-ordered random samples Punpaired = 0.466 (not significant) while 251 

for the same sample of data-pairs Ppaired = 2.76e-05 (highly significant). 252 

Despite problems caused by autocorrelation and non-normality, Cohen’s d calculated that the 253 

AWS at Site2 was 0.12 to 0.13 standard deviations warmer than Site1, with the difference 254 

ranked as negligible. This reinforces that effects detected as significant due to large sample 255 

sizes should not be overvalued as being meaningful or consequential. 256 

Table 2. Paired and un-paired t-tests for raw data and day-of-year anomalies. As differences between 
randomly sampled paired or un-paired anomaly datasets were not significant, results for those tests 
are not given. 

Comparison 
Site1 vs Site2 

Delta (Site2 
- Site1) (oC) 

Significance 
(P) 

Importance 
(Cohen’s d (95% Ci)) 

Size effect4 

(Magnitude) 
Raw data paired and un-paired1 0.335 <0.001 0.13 (-0.192, 0.074) Negligible 
Raw data paired and un-paired, shuffle2 0.335 <0.001 0.13 (-0.192, 0.074) Negligible 
Anomalies paired and un-paired 5.6-E17 ns (P >0.05) NA NA 
Raw data subsample 23  0.350 0.014 0.13 (-0.231, -0.025) Negligible 
Raw data subsample 3 0.338 0.018 0.12 (-0.227, -0.021) Negligible 
Raw data subsample 1 0.332 0.028 0.12 (-0.218, -0.013) Negligible 
Notes: 
1 For all comparisons, significances were higher for paired verses un-paired t-tests 

2 While shuffling removed autocorrelation it made no difference to test outcomes. It should be noted therefore that 
autocorrelation in input data affects validity of the test, not its significance. 

3 While data were randomly subsampled, sample size in all cases was N=729 

4 The size effect is assessed using the thresholds provided in (Cohen 1992, updated in 1988), viz. |d|<0.2 "negligible", 
|d|<0.5 "small", |d|<0.8 "medium", otherwise "large". 

   Citation: Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). New York:Academic Press.  

 

2.3.1 The effect of sample size on the significance of unpaired t-tests 257 

Akin to a Monte Carlo simulation, site differences and Cohen’s d was evaluated by randomly 258 

sampling progressively larger numbers of cases (with replacement) from an initial 1%/year 259 

(N=24), advancing by 2%/year, to N 1740 in 40-rounds, which represented 78% of the dataset 260 

(Figure 8). Samples were not time-ordered and a duplicate experiment showed the same 261 

result. (If data were re-ordered, autocorrelation emerged after 3-rounds i.e., when the number 262 

of time-ordered samples equalled or exceeded approximately N=109.)  263 

https://cran.r-project.org/web/packages/effsize/effsize.pdf
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While the t-statistic for the unpaired t-test declined (became more significant) from P=0.69 at 264 

N=24, to P=0.05 at N=560, after steading at N=332 response variables showed no marked 265 

change within the bounds of sampling variation. Thus, it could not be claimed that increasing 266 

significance (i.e., declining P-levels) were related to increased differences between dataset 267 

means or changed effect sizes. 268 

Dependence of P-level on N and not on the response variable potentially results in Type1 error, 269 

which is declaring differences to be significant when they may not be; or that the significances 270 

could be a test artefact. For instance, the same 0.33oC to 0.34oC difference which was not 271 

significant below N=560, became significant because the pooled standard error declined as 272 

sample size increased.  273 

Figure 8. As sample size increased from N=24 to 274 
N=560, P declined (became more significant), 275 
while after steadying at N=332, differences 276 
between Site1 and Site2 remained the same. 277 
Averaging 0.12 standard deviations, Cohens d 278 
(effect size, blue triangles) was also not 279 
responsive to sample size.  280 

 281 

2.4 Discussion 282 

This note outlines in general terms, assumptions underlying the use of paired and unpaired 283 

t-tests for comparing timeseries of maximum temperature data measured in parallel by 284 

different instruments housed in the same or different Stevenson screens. The overlap dataset 285 

used as the case study consisted of same-day manually observed thermometers and AWS-286 

probes, housed in 60-litre screens located 179m apart at Townsville airport from 9 December 287 

1994 to 31 December 2000. The research question is whether Tmax observed by the different 288 

instruments at the two sites was different. 289 

A vexing question at the outset, is whether data collected each day by separate instruments in 290 

same-sized screens or co-located in the same screen (e.g., Figure 1) represent two independent 291 

subject groups (observations with no connection between them), or if data represent true 292 

data-pairs collected sequentially from homogeneous subjects, items or things as required for a 293 

valid repeated-measures (paired) t-test. To draw an analogy, a paired t-test would be valid if 294 

two instruments were used on each of a succession of subjects; however, if each instrument 295 

measured subjects that were not precisely the same and subjects and instruments formed 296 

separate groups, an un-paired t-test would be appropriate and the paired t-test would not.     297 

While seemingly pedantic, the question is important because as pairing is intended to control 298 

variation within subjects, significance levels (P) are considerably enhanced relative to 299 

comparing means of the same data using an un-paired test.        300 

The two instruments either in two separate screens or co-located as in Figure 1, with one 301 

nearer the rear of the screen and the other near the front, are the test subjects, while daily 302 

Tmax is the response variable which the paired design assumes to be homogeneous (exactly 303 

the same for each instrument each day). However, irrespective of whether data are available 304 

each day, air within or between screens is unlikely to be spatially and timewise homogeneous, 305 
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thus testing differences between independently observed populations of values would be more 306 

appropriate than paired t-tests under the circumstances.  307 

Furthermore, a Monte Carlo sampling experiment of pairs of raw data found the paired test 308 

needed less than 24 randomly chosen cases to find significance, while the unpaired test 309 

needed 560 data-pairs. Bias resulting from choosing one test that may not be appropriate, over 310 

another may therefore be considerable.   311 

As annual day-of-year cycles dominated both datasets and raw Tmax was autocorrelated at all 312 

lags, comparing raw data using paired or unpaired t-tests was invalid anyway. Autocorrelation 313 

arises because average Tmax cools toward the end of each month during the cooling phase 314 

from February to June, and the end of each month gets warmer during the warming phase, 315 

which explains reversal (from positive to negative correlation) of the ACF plot (Figure 3). 316 

Autocorrelation is a property of the data not the test. It causes estimated standard errors (the 317 

noise, which is the dominator) to be underestimated relative to differences (the signal, which is 318 

the numerator), which increases the t-value and thus the likelihood of significant effects. 319 

Testing for autocorrelation and removing underlying seasonal cycles by deducting day-of-year 320 

averages from respective day-of-year data maintained timewise integrity of the data, including 321 

relationships with covariables. It also removed bimodality, caused datasets to assume a more 322 

normal distribution and vastly reduced the magnitude of uncontrolled factors including lagged 323 

processes (unaccounted-for variables), without affecting data-properties. Whether compared 324 

using paired or un-paired t-tests, removing seasonal cycles also caused Site2 data to be not 325 

significantly different to data for Site1. While Figure 6 shows tails of Site2 data distributions 326 

were warmer, that the raw data means were different was an artefact of the tests.  327 

Finding statistical outcomes were the same for time-ordered as they were when 328 

autocorrelation was disrupted by shuffling (Table 2) pointed to another issue, which is the 329 

effect of the large sample size (2,212 cases) on finding diminishingly-small differences as highly 330 

significant, when they were not meaningful. 331 

The random sampling exercise (Figure 8) showed the weaknesses of analysing increasingly 332 

large sample sizes using un-paired t-tests. It was found that as the number of samples 333 

increased, pooled standard errors became diminishingly small, so the significance of the test 334 

increased independently of the difference or its importance (effect size). Furthermore, applying 335 

the wrong test (the paired t-test) to randomly selected data-pairs vasty increased the likelihood 336 

of detecting spurious differences. Data-shopping in all its forms, including using inappropriate 337 

tests undermines trust in the outcome.  338 

A suggested protocol for undertaking preliminary investigations of paired datasets is given in 339 

Appendix 1 and the accompanying Excel workbook contains a worked example of calculating 340 

and deducting day-of-year averages from respective day of year data.  341 

Conclusions 342 

It is vital at the outset of undertaking paired and un-paired t-tests of intensively sampled 343 

timeseries to examine properties of datasets and mitigate the presence of autocorrelation. As 344 

the significance of test outcomes also increase as the numbers of samples increase, solely 345 

relying on P-values can lead researchers to claim significance for differences that are of no 346 

practical worth. Researchers are therefore encouraged to employ an empirical measure of 347 

whether a significant or highly significant outcome is meaningful. 348 

Notwithstanding the problem of misleading ACORN-SAT metadata, which must be deliberate, 349 

with effects of autocorrelation and non-normality much diminished, neither paired nor 350 
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unpaired t-tests detected significance in the difference between Tmax measured at Site1 using 351 

thermometers and Site2 by the AWS at Townsville airport.  352 

 353 

Dr. Bill Johnston 354 

3 June 2023  355 

 356 

 357 

Disclaimer: 358 

This note is intended to provide guidance of a general nature specific to undertaking 359 

comparisons between meteorological instruments. While the Author undertook an 360 

undergraduate course in biometry, and post-graduate workshops etc., and has since honed 361 

those skills through reading, investigation and practical application using R, he does not claim 362 

to be a statistician.  363 
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Appendix 1  366 

A suggested protocol for undertaking investigations of paired datasets using PAST from the 367 

University of Oslo: https://www.nhm.uio.no/english/ research/ resources/past/  368 

(Citation: Hammer, Ø., Harper, D.A.T., Ryan, P.D. 2001. PAST: Paleontological statistics software 369 

package for education and data analysis. Palaeontologia Electronica 4(1): 9pp.) 370 

Paste data into PAST [PAST manual (v. 4.08) p. 10] 371 

Firstly, calculate summary statistics and check the treatment (instrument) means and moments 372 

(1st Quartile (25th pc), median and 75th Q); also, standard error, standard deviation (SD) and 373 

variance (which are related) [PAST manual p. 47]. 374 

Calculate the difference between the means as a ratio of the standard deviation using the 375 

formula: (SiteB-SiteA)/SD, this gives Cohen’s d which robustly determines if the difference 376 

(the effect size) is likely to be negligible (less than 0.2 SD units), small (>0.2), medium (>0.5) 377 

or large (<0.8).  378 

Secondly, plot data in time order (as graph, not x,y graph) and examine cycles and trends. 379 

[PAST manual p. 24] 380 

Thirdly, make a histogram (graph), overlay the normal distribution line and look to see if data 381 

are normally distributed, bimodal, long or short tailed etc. [PAST manual p. 27. Note, change 382 

graph properties to emphasise aspects of data; numbers can be copied.] 383 

Fourth, plot a Q-Q (normal distribution) plot and decide if data need to be adjusted or 384 

transformed. [PAST manual p. 33; numbers can be copied.] 385 

Fifth, plot an ACF (autocorrelation) plot to identify signals in the data and how they are related 386 

(i.e., check data are independent, or if the degree of AC is of concern. [PAST manual p. 211; 387 

numbers can be copied.] 388 

Calculate and remove day-of-year cycles from each timeseries. (See method and formulae 389 

provided in the Townsville data workbook (Townsville_PAST.xlsx).  390 

1. Prepare the data as per DataPrep tag, including pairing, calculating dates and removing 391 

rows having missing observations. Headers are in Row3, data start in Row4) 392 

2. Insert index column to the left of the data (Col A, DayNum) that indexes day of the year 393 

(DayNum) for all pairs of observations (1 to ~ 366). This can be done in Excel using the 394 

date column (Col B) as: A4=B4-DATE(YEAR(B4),1,0); copy to the bottom of the 395 

datatable.  396 

3. Make a pivot table based on Day of Year, and set the values to be averages for each 397 

timeseries. Copy the pivot table and paste as numbers a few columns to the right of the 398 

datatable, say in Columns J (Row label), K (Site1), and L (Site2).  399 

[The three-column list forms a lookup table showing the average for each of day of year 400 

(366-rows of data).] Insert a Column after Date (Col C) and calculate DeciYear (for 401 

graphing). The formula is C4 = YEAR(B4)+A4/365.25  402 

4. Assuming data are in the order of: DayNum, Date, DeciYear, Site1 and Site2 (Cols A to E) 403 

with the first data row being Row4; with the lookup table in Columns J [day number], K 404 

[Site1 day-of-year average] and L [Site2 day-of-year average], the lookup formula is: 405 

=C4-VLOOKUP($A4, $J$4:$L$369,2) [Paste formula into F4; Name Col F as Site1Anom] 406 

=G4-VLOOKUP($A4, $J$4:$L$369,3) [Paste formula into G4; Name Col F as Site2Anom] 407 

https://www.nhm.uio.no/english/%20research/%20resources/past/
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[The command looks up the reference row number in Col A, in the first column of the 408 

lookuptable array [Col J] and return the value in the second column of the array [which 409 

is Col K] specified as ,2) and also the value for ,3), for the third array column.]  410 

Respective formulae will then deduct the lookup value, from the data values in Col D 411 

and E to give daily anomaly values in Cols F and G. Copy the formulae to the bottom of 412 

the datatable, name the columns Site1Anom and Site2Anom and calculate Delta 413 

(Site2Anom minus Site1Anom). It is advisable to open a new worksheet and copy and 414 

paste the DataTable as numbers into the new sheet, then save the Workbook. 415 

Paste the anomaly data into PAST and repeat the first four steps using anomaly data i.e., 416 

summary, timewise graph, histogram, Q-Q plot and ACF plot and check how things changed. 417 

You can either then continue with PAST and do Univariate samples, two-sample tests [PAST 418 

Manual p. 53] and two-sample paired tests [PAST Manual p. 62], or with Minitab, or whatever. 419 

If you have the option (which you don’t in PAST (yet)) ask for Cohen’s d with 95% confidence 420 

intervals.  421 

As anomalies have been de-cycled, it is important to compare if tests on raw data are still 422 

significant when conducted using anomalies.  423 

 424 

3 June 2023 425 


